Search results
Results From The WOW.Com Content Network
Linear regression with a structural break. In econometrics and statistics, a structural break is an unexpected change over time in the parameters of regression models, which can lead to huge forecasting errors and unreliability of the model in general.
The red line represents an observed drop in output. Green shows the path of recovery if the series has a unit root. Blue shows the recovery if there is no unit root and the series is trend-stationary. The blue line returns to meet and follow the dashed trend line while the green line remains permanently below the trend.
This is an important technique for all types of time series analysis, especially for seasonal adjustment. [2] It seeks to construct, from an observed time series, a number of component series (that could be used to reconstruct the original by additions or multiplications) where each of these has a certain characteristic or type of behavior.
At = there is a structural break; separate regressions on the subintervals [,] and [,] delivers a better model than the combined regression (dashed) over the whole interval. Comparison of two different programs (red, green) in a common data set: separate regressions for both programs deliver a better model than a combined regression (black).
Segmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various ...
Partial autocorrelation function of Lake Huron's depth with confidence interval (in blue, plotted around 0). In time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags.
For standard least squares estimation methods, the design matrix X must have full column rank p; otherwise perfect multicollinearity exists in the predictor variables, meaning a linear relationship exists between two or more predictor variables. This can be caused by accidentally duplicating a variable in the data, using a linear transformation ...
Cointegration is a crucial concept in time series analysis, particularly when dealing with variables that exhibit trends, such as macroeconomic data. In an influential paper, [ 1 ] Charles Nelson and Charles Plosser (1982) provided statistical evidence that many US macroeconomic time series (like GNP, wages, employment, etc.) have stochastic ...