When.com Web Search

  1. Ads

    related to: quadratic interpolation examples geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.

  3. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    Polynomial interpolation can estimate local maxima and minima that are outside the range of the samples, unlike linear interpolation. For example, the interpolant above has a local maximum at x ≈ 1.566, f(x) ≈ 1.003 and a local minimum at x ≈ 4.708, f(x) ≈ −1.003.

  4. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    One derivation replaces the integrand () by the quadratic polynomial (i.e. parabola) () that takes the same values as () at the end points and and the midpoint +, where = /.

  5. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    The choices made for representing the spline, for example: using basis functions for the entire spline (giving us the name B-splines) using Bernstein polynomials as employed by Pierre Bézier to represent each polynomial piece (giving us the name Bézier splines) The choices made in forming the extended knot vector, for example:

  6. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Muller's method — based on quadratic interpolation at last three iterates; Sidi's generalized secant method — higher-order variants of secant method; Inverse quadratic interpolation — similar to Muller's method, but interpolates the inverse; Brent's method — combines bisection method, secant method and inverse quadratic interpolation

  7. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .

  8. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...

  9. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    In the sixth iteration, we cannot use inverse quadratic interpolation because b 5 = b 4. Hence, we use linear interpolation between (a 5, f(a 5)) = (−3.35724, −6.78239) and (b 5, f(b 5)) = (−2.71449, 3.93934). The result is s = −2.95064, which satisfies all the conditions. But since the iterate did not change in the previous step, we ...