Ad
related to: calculate bleu score online
Search results
Results From The WOW.Com Content Network
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU.
The quality of a translation is inherently subjective, there is no objective or quantifiable "good." Therefore, any metric must assign quality scores so they correlate with the human judgment of quality. That is, a metric should score highly translations that humans score highly, and give low scores to those humans give low scores.
To calculate a score over a whole corpus, or collection of segments, the aggregate values for P, R and p are taken and then combined using the same formula. The algorithm also works for comparing a candidate translation against more than one reference translations.
Given those three samples, we could calculate the mean reciprocal rank as (/ + / +) / = /, or approximately 0.61. If none of the proposed results are correct, the reciprocal rank is 0. [ 1 ] Note that only the rank of the first relevant answer is considered, and possible further relevant answers are ignored.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
To calculate the recall for a given class, we divide the number of true positives by the prevalence of this class (number of times that the class occurs in the data sample). The class-wise precision and recall values can then be combined into an overall multi-class evaluation score, e.g., using the macro F1 metric. [21]
in which refers to the quantity being scaled (i.e. , , , number of training steps, number of inference steps, or model input size) and refers to the downstream (or upstream) performance evaluation metric of interest (e.g. prediction error, cross entropy, calibration error, AUROC, BLEU score percentage, F1 score, reward, Elo rating, solve rate ...
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. ROUGE metrics range between 0 and 1, with higher scores indicating higher similarity between the automatically produced summary and the reference.