Search results
Results From The WOW.Com Content Network
A Π-pad attenuator formed from two symmetrical L sections. Because of the symmetry, R 1 = R 3 in this case. For an attenuator, Z and Y are simple resistors and γ becomes the image parameter attenuation (that is, the attenuation when terminated with the image impedances) in nepers. A Π pad can be viewed as being two L sections back-to-back as ...
100 Watt power attenuator. An attenuator is a passive broadband electronic device that reduces the power of a signal without appreciably distorting its waveform. An attenuator is effectively the opposite of an amplifier, though the two work by different methods. While an amplifier provides gain, an attenuator provides loss, or gain less than ...
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.
In telecommunications, the free-space path loss (FSPL) (also known as free-space loss, FSL) is the attenuation of radio energy between the feedpoints of two antennas that results from the combination of the receiving antenna's capture area plus the obstacle-free, line-of-sight (LoS) path through free space (usually air). [1]
Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. A.
To calculate 16 n−k mod (8k + 1) quickly and efficiently, the modular exponentiation algorithm is done at the same loop level, not nested. When its running 16x product becomes greater than one, the modulus is taken, just as for the running total in each sum. Now to complete the calculation, this must be applied to each of the four sums in turn.
The Gauss–Legendre algorithm is an algorithm to compute the digits of π.It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π.
Path loss normally includes propagation losses caused by the natural expansion of the radio wave front in free space (which usually takes the shape of an ever-increasing sphere), absorption losses (sometimes called penetration losses), when the signal passes through media not transparent to electromagnetic waves, diffraction losses when part of the radiowave front is obstructed by an opaque ...