Search results
Results From The WOW.Com Content Network
Hugging Face, Inc. is a Franco-American company that develops computation tools for building applications using machine learning. It is known for its transformers library built for natural language processing applications.
For further details check the project's GitHub repository or the Hugging Face dataset cards (taskmaster-1, taskmaster-2, taskmaster-3). Dialog/Instruction prompted 2019 [339] Byrne and Krishnamoorthi et al. DrRepair A labeled dataset for program repair. Pre-processed data Check format details in the project's worksheet. Dialog/Instruction prompted
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: If , =,,, is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
For example, the English phrase look it up corresponds to cherchez-le. Thus, "soft" attention weights work better than "hard" attention weights (setting one attention weight to 1, and the others to 0), as we would like the model to make a context vector consisting of a weighted sum of the hidden vectors, rather than "the best one", as there may ...
The generator is not sensitive to the choice of c, as long as it is relatively prime to the modulus (e.g. if m is a power of 2, then c must be odd), so the value c=1 is commonly chosen. The sequence produced by other choices of c can be written as a simple function of the sequence when c=1.