Search results
Results From The WOW.Com Content Network
Illustration of the Archimedean property. In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields.
Today this is known as the Archimedean property of real numbers. [76] Archimedes gives the value of the square root of 3 as lying between 265 / 153 (approximately 1.7320261) and 1351 / 780 (approximately 1.7320512) in Measurement of a Circle. The actual value is approximately 1.7320508, making this a very accurate estimate.
The Archimedes number is applied often in the engineering of packed beds, which are very common in the chemical processing industry. [3] A packed bed reactor, which is similar to the ideal plug flow reactor model, involves packing a tubular reactor with a solid catalyst, then passing incompressible or compressible fluids through the solid bed. [3]
An infinitesimal is a nonstandard real number that is less, in absolute value, than any positive standard real number. In 2006 Karel Hrbacek developed an extension of Nelson's approach in which the real numbers are stratified in (infinitely) many levels; i.e., in the coarsest level, there are no infinitesimals nor unlimited numbers.
The sets of the integers, the rational numbers, and the real numbers, together with the operation of addition and the usual ordering (≤), are Archimedean groups.Every subgroup of an Archimedean group is itself Archimedean, so it follows that every subgroup of these groups, such as the additive group of the even numbers or of the dyadic rationals, also forms an Archimedean group.
The long real line pastes together ℵ 1 * + ℵ 1 copies of the real line plus a single point (here ℵ 1 * denotes the reversed ordering of ℵ 1) to create an ordered set that is "locally" identical to the real numbers, but somehow longer; for instance, there is an order-preserving embedding of ℵ 1 in the long real line but not in the real ...
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
Axiom of Archimedes (real number) Axiom of countability ; Dirac–von Neumann axioms; Fundamental axiom of analysis (real analysis) Gluing axiom (sheaf theory) Haag–Kastler axioms (quantum field theory) Huzita's axioms ; Kuratowski closure axioms ; Peano's axioms (natural numbers) Probability axioms; Separation axiom