Search results
Results From The WOW.Com Content Network
Two types of molecules having axial chirality: allenes (left) and binaryl atropisomers (right) In chemistry, axial chirality is a special case of chirality in which a molecule contains two pairs of chemical groups in a non-planar arrangement about an axis of chirality so that the molecule is not superposable on its mirror image.
Molecules with chirality arising from one or more stereocenters are classified as possessing central chirality. There are two other types of stereogenic elements that can give rise to chirality, a stereogenic axis (axial chirality) and a stereogenic plane (planar chirality).
The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18] In chemistry, chirality usually refers to molecules. Two mirror images of a chiral molecule are called enantiomers or optical isomers. Pairs of enantiomers are often designated as "right-", "left-handed" or, if they have no bias ...
[5]: 1138ff First, while nevertheless appearing to be twisted, they yet may have a chiral center making them analogous to any simple chiral compound, and second, while again appearing twisted, the specific location of substituents, as with alkylidenecycloalkanes, may make a spiro compound display central chirality (rather than axial chirality ...
This chiral diphosphine ligand is widely used in asymmetric synthesis. It consists of a pair of 2-diphenylphosphinonaphthyl groups linked at the 1 and 1′ positions. This C 2-symmetric framework lacks a stereogenic atom, but has axial chirality due to restricted rotation (atropisomerism).
Chiral molecules produced within the fields of organic chemistry or inorganic chemistry are racemic unless a chiral reagent was employed in the same reaction. At the fundamental level, polarization rotation in an optically active medium is caused by circular birefringence, and can best be understood in that way.
Atropisomers exhibit axial chirality (planar chirality). When the barrier to racemization is high, as illustrated by the BINAP ligands, the phenomenon becomes of practical value in asymmetric synthesis. Methaqualone, the anxiolytic and hypnotic-sedative, is a classical example of a drug molecule that exhibits the phenomenon of atropisomerism. [9]
1,1 ′-Bi-2-naphthol (BINOL) is an organic compound that is often used as a ligand for transition-metal catalysed asymmetric synthesis.BINOL has axial chirality and the two enantiomers can be readily separated and are stable toward racemisation.