When.com Web Search

  1. Ads

    related to: understanding and applying text embeddings worksheet 3

Search results

  1. Results From The WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  3. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:

  4. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    State of the art embeddings are based on the learned hidden layer representation of dedicated sentence transformer models. BERT pioneered an approach involving the use of a dedicated [CLS] token prepended to the beginning of each sentence inputted into the model; the final hidden state vector of this token encodes information about the sentence ...

  5. Center embedding - Wikipedia

    en.wikipedia.org/wiki/Center_embedding

    In spoken language, multiple center-embeddings even of degree 2 are so rare as to be practically non-existing. [ 1 ] Center embedding is the focus of a science fiction novel, Ian Watson 's The Embedding , and plays a part in Ted Chiang 's Story of Your Life .

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    An "encoder-only" Transformer applies the encoder to map an input text into a sequence of vectors that represent the input text. This is usually used for text embedding and representation learning for downstream applications. BERT is encoder-only. They are less often used currently, as they were found to be not significantly better than ...

  7. Reading comprehension - Wikipedia

    en.wikipedia.org/wiki/Reading_comprehension

    Reading comprehension and vocabulary are inextricably linked together. The ability to decode or identify and pronounce words is self-evidently important, but knowing what the words mean has a major and direct effect on knowing what any specific passage means while skimming a reading material.

  8. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  9. Johnson–Lindenstrauss lemma - Wikipedia

    en.wikipedia.org/wiki/Johnson–Lindenstrauss_lemma

    Much of the data stored and manipulated on computers, including text and images, can be represented as points in a high-dimensional space (see vector space model for the case of text). However, the essential algorithms for working with such data tend to become bogged down very quickly as dimension increases. [ 1 ]