Search results
Results From The WOW.Com Content Network
A space that admits such a homeomorphism is called a triangulable space. Triangulations can also be used to define a piecewise linear structure for a space, if one exists. Triangulation has various applications both in and outside of mathematics, for instance in algebraic topology, in complex analysis, and in modeling.
In general relativity, Regge calculus is a formalism for producing simplicial approximations of spacetimes that are solutions to the Einstein field equation. The calculus was introduced by the Italian theoretician Tullio Regge in 1961.
Barycentric coordinates (,,) on an equilateral triangle and on a right triangle. A 3-simplex, with barycentric subdivisions of 1-faces (edges) 2-faces (triangles) and 3-faces (body). In geometry , a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points ...
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
The four simplexes that can be fully represented in 3D space. In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is ...
The functional calculus is the mapping Φ from Hol(T) to L(X) given by = (). We will require the following properties of this functional calculus: Φ extends the polynomial functional calculus. The spectral mapping theorem holds: σ(f(T)) = f(σ(T)). Φ is an algebra homomorphism.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Edges of the Voronoi diagram going to infinity are not defined by this relation in case of a finite set P. If the Delaunay triangulation is calculated using the Bowyer–Watson algorithm then the circumcenters of triangles having a common vertex with the "super" triangle should be ignored. Edges going to infinity start from a circumcenter and ...