When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    RungeKutta–Nyström methods are specialized RungeKutta methods that are optimized for second-order differential equations. [22] [23] A general RungeKutta–Nyström method for a second-order ODE system ¨ = (,, …,) with order is with the form

  3. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2]), or a similar two-stage RungeKutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.

  4. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    The RungeKutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is: / / / / / / / / / / / / / / / / / / / / / / / / / / The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...

  6. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order. We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps.

  7. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    The explicit midpoint method is sometimes also known as the modified Euler method, [1] the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a symplectic integrator. Note that the modified Euler method can refer to Heun's method, [2] for further clarity see List of RungeKutta methods.

  8. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a RungeKutta method and a linear multistep method.

  9. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as RungeKutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt ...