Search results
Results From The WOW.Com Content Network
In mathematical optimization, the Rosenbrock function is a non-convex function, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for optimization algorithms. [1] It is also known as Rosenbrock's valley or Rosenbrock's banana function. The global minimum is inside a long, narrow, parabolic-shaped flat ...
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
The idea of Rosenbrock search is also used to initialize some root-finding routines, such as fzero (based on Brent's method) in Matlab. Rosenbrock search is a form of derivative-free search but may perform better on functions with sharp ridges. [6] The method often identifies such a ridge which, in many applications, leads to a solution. [7]
The short form of the Rosenbrock system matrix has been widely used in H-infinity methods in control theory, where it is also referred to as packed form; see command pck in MATLAB. [3] An interpretation of the Rosenbrock System Matrix as a Linear Fractional Transformation can be found in. [ 4 ]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
I recommend that this Wiki page lists only test functions if they are cited with the seminal source, which should be a permanently accessible reference, e.g. journal paper or Zenodo. A good example is H.H. Rosenbrock "An automatic method for finding the greatest or least value of a function" The Computer J. 1960. This will enable double-checking.