Search results
Results From The WOW.Com Content Network
Wave functions represent quantum states, particularly when they are functions of position or of momentum. Historically, definitions of quantum states used wavefunctions before the more formal methods were developed. [4]: 268 The wave function is a complex-valued function of any complete set of commuting or compatible degrees of freedom.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
Quantum spin Hall state: a theoretical phase that may pave the way for the development of electronic devices that dissipate less energy and generate less heat. This is a derivative of the quantum Hall state of matter. Quantum anomalous Hall state: A state which has a quantized Hall resistance even in the absence of external magnetic field.
The video of an experiment showing vacuum fluctuations (in the red ring) amplified by spontaneous parametric down-conversion.. If the quantum field theory can be accurately described through perturbation theory, then the properties of the vacuum are analogous to the properties of the ground state of a quantum mechanical harmonic oscillator, or more accurately, the ground state of a measurement ...
In QBism, all quantum states are representations of personal probabilities. In physics and the philosophy of physics, quantum Bayesianism is a collection of related approaches to the interpretation of quantum mechanics, the most prominent of which is QBism (pronounced "cubism"). QBism is an interpretation that takes an agent's actions and ...
Print/export Download as PDF; Printable version; In other projects ... Help. Pages in category "Quantum states" The following 31 pages are in this category, out of 31 ...
For example, according to simple (nonrelativistic) quantum mechanics, the hydrogen atom has many stationary states: 1s, 2s, 2p, and so on, are all stationary states. But in reality, only the ground state 1s is truly "stationary": An electron in a higher energy level will spontaneously emit one or more photons to decay into the ground state. [ 3 ]
Product states are multipartite quantum states that can be written as a tensor product of states in each space. The physical intuition behind these definitions is that product states have no correlation between the different degrees of freedom, while separable states might have correlations, but all such correlations can be explained as due to ...