When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    A hyperbolic paraboloid with lines contained in it Pringles fried snacks are in the shape of a hyperbolic paraboloid. The hyperbolic paraboloid is a doubly ruled surface: it contains two families of mutually skew lines. The lines in each family are parallel to a common plane, but not to each other. Hence the hyperbolic paraboloid is a conoid.

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...

  4. List of hyperboloid structures - Wikipedia

    en.wikipedia.org/wiki/List_of_hyperboloid_structures

    Hyperbolic paraboloid saddle roof on train station Church Army Chapel, Blackheath: 1963 Blackheath, south east London United Kingdom: Hyperbolic paraboloid saddle roof on church E.T. Spashett: Kobe Port Tower: 1963 Kōbe Japan: Hyperboloid observation tower 108 m (354 ft) Nikken Sekkei Company: Saint Louis Science Center's James S. McDonnell ...

  5. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.

  6. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the ...

  7. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.

  8. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

  9. Saddle roof - Wikipedia

    en.wikipedia.org/wiki/Saddle_roof

    The hyperbolic paraboloid is a doubly ruled surface and thus can be used to construct a saddle roof from straight beams.. A saddle roof is a roof form which follows a convex curve about one axis and a concave curve about the other.