When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximal ideal - Wikipedia

    en.wikipedia.org/wiki/Maximal_ideal

    There is an analogous list for one-sided ideals, for which only the right-hand versions will be given. For a right ideal A of a ring R, the following conditions are equivalent to A being a maximal right ideal of R: There exists no other proper right ideal B of R so that A ⊊ B. For any right ideal B with A ⊆ B, either B = A or B = R.

  3. Jacobson radical - Wikipedia

    en.wikipedia.org/wiki/Jacobson_radical

    For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...

  4. Krull's theorem - Wikipedia

    en.wikipedia.org/wiki/Krull's_theorem

    For noncommutative rings, the analogues for maximal left ideals and maximal right ideals also hold. For pseudo-rings, the theorem holds for regular ideals. An apparently slightly stronger (but equivalent) result, which can be proved in a similar fashion, is as follows: Let R be a ring, and let I be a proper ideal of R.

  5. Radical of a ring - Wikipedia

    en.wikipedia.org/wiki/Radical_of_a_ring

    J(R) is the intersection of all the right (or left) primitive ideals of R. J(R) is the maximal right (or left) quasi-regular right (resp. left) ideal of R. As with the nilradical, we can extend this definition to arbitrary two-sided ideals I by defining J(I) to be the preimage of J(R/I) under the projection map R → R/I.

  6. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    (DD2) is Noetherian, and the localization at each maximal ideal is a discrete valuation ring. (DD3) Every nonzero fractional ideal of R {\displaystyle R} is invertible. (DD4) R {\displaystyle R} is an integrally closed , Noetherian domain with Krull dimension one (that is, every nonzero prime ideal is maximal).

  7. Krull's principal ideal theorem - Wikipedia

    en.wikipedia.org/wiki/Krull's_principal_ideal...

    The converse is also true: if a prime ideal has height n, then it is a minimal prime ideal over an ideal generated by n elements. [ 1 ] The principal ideal theorem and the generalization, the height theorem, both follow from the fundamental theorem of dimension theory in commutative algebra (see also below for the direct proofs).

  8. Commutative algebra - Wikipedia

    en.wikipedia.org/wiki/Commutative_algebra

    An affine algebraic variety corresponds to a prime ideal in a polynomial ring, and the points of such an affine variety correspond to the maximal ideals that contain this prime ideal. The Zariski topology , originally defined on an algebraic variety, has been extended to the sets of the prime ideals of any commutative ring; for this topology ...

  9. Spectrum of a ring - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_ring

    Thus, points in n-space, thought of as the max spec of = [, …,], correspond precisely to 1-dimensional representations of R, while finite sets of points correspond to finite-dimensional representations (which are reducible, corresponding geometrically to being a union, and algebraically to not being a prime ideal). The non-maximal ideals then ...