When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Given an integer n that will be factored, where n is an odd positive integer greater than a certain constant. In this factoring algorithm the discriminant Δ is chosen as a multiple of n, Δ = −dn, where d is some positive multiplier. The algorithm expects that for one d there exist enough smooth forms in G Δ.

  3. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  4. RSA Factoring Challenge - Wikipedia

    en.wikipedia.org/wiki/RSA_Factoring_Challenge

    The computer's hard drive was subsequently destroyed so that no record would exist, anywhere, of the solution to the factoring challenge. [ 6 ] The first RSA numbers generated, RSA-100 to RSA-500 and RSA-617, were labeled according to their number of decimal digits; the other RSA numbers (beginning with RSA-576) were generated later and ...

  5. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    Occasionally it may cause the algorithm to fail by introducing a repeated factor, for instance when ⁠ ⁠ is a square. But it then suffices to go back to the previous gcd term, where gcd ( z , n ) = 1 {\displaystyle \gcd(z,n)=1} , and use the regular ρ algorithm from there.

  6. RSA problem - Wikipedia

    en.wikipedia.org/wiki/RSA_problem

    The most efficient method known to solve the RSA problem is by first factoring the modulus N, a task believed to be impractical if N is sufficiently large (see integer factorization). The RSA key setup routine already turns the public exponent e , with this prime factorization, into the private exponent d , and so exactly the same algorithm ...

  7. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    The Kissing Number Problem. A broad category of problems in math are called the Sphere Packing Problems. They range from pure math to practical applications, generally putting math terminology to ...

  8. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    As far as is known, this is not possible using classical (non-quantum) computers; no classical algorithm is known that can factor integers in polynomial time. However, Shor's algorithm shows that factoring integers is efficient on an ideal quantum computer, so it may be feasible to defeat RSA by constructing a large quantum computer.

  9. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Since f is of degree d with integer coefficients, if a and b are integers, then so will be b d ·f(a/b), which we call r. Similarly, s = b e · g ( a / b ) is an integer. The goal is to find integer values of a and b that simultaneously make r and s smooth relative to the chosen basis of primes.