Search results
Results From The WOW.Com Content Network
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
The Casio FX-7000G is a calculator which is widely known as being the world's first graphing calculator available to the public. It was introduced to the public and later manufactured between 1985 and c. 1988. [2] Notable features are its ability to graph functions, [3] and that it is programmable.
These variables are also shared by other functions of the calculator, for instance, drawing a graph will overwrite the X and Y values. MicroPython was added to Casio graphing from the PRIZM fx-CG50 and the fx-9860 GIII series. The latest Classwiz CG Series of graphing calculators instead use the Python programming language. [12]
In graph theory, a graph or digraph whose adjacency matrix is circulant is called a circulant graph/digraph. Equivalently, a graph is circulant if its automorphism group contains a full-length cycle. The Möbius ladders are examples of circulant graphs, as are the Paley graphs for fields of prime order.
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections.It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic.