When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    The test sample (green dot) should be classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).

  3. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In practice, researchers first select a model they would like to estimate and then use their chosen method (e.g., ordinary least squares) to estimate the parameters of that model. Regression models involve the following components: The unknown parameters, often denoted as a scalar or vector.

  5. Regression testing - Wikipedia

    en.wikipedia.org/wiki/Regression_testing

    Regression testing is performed when changes are made to the existing functionality of the software or if there is a bug fix in the software. Regression testing can be achieved through multiple approaches; if a test all approach is followed, it provides certainty that the changes made to the software have not affected the existing functionalities, which are unaltered.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Regression diagnostic - Wikipedia

    en.wikipedia.org/wiki/Regression_diagnostic

    Partial regression plot; Student's t test for testing inclusion of a single explanatory variable, or the F test for testing inclusion of a group of variables, both under the assumption that model errors are homoscedastic and have a normal distribution. Change of model structure between groups of observations. Structural break test. Chow test

  8. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    The size of each of the sets is arbitrary although typically the test set is smaller than the training set. We then train (build a model) on d 0 and test (evaluate its performance) on d 1. In typical cross-validation, results of multiple runs of model-testing are averaged together; in contrast, the holdout method, in isolation, involves a ...

  9. Structured kNN - Wikipedia

    en.wikipedia.org/wiki/Structured_kNN

    Structured k-nearest neighbours (SkNN) [1] [2] [3] is a machine learning algorithm that generalizes k-nearest neighbors (k-NN). k-NN supports binary classification, multiclass classification, and regression, [4] whereas SkNN allows training of a classifier for general structured output.