Search results
Results From The WOW.Com Content Network
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity with increasing numbers of energy levels. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if the metal is heated red hot. [9]
The galvanic series (or electropotential series) determines the nobility of metals and semi-metals. When two metals are submerged in an electrolyte, while also electrically connected by some external conductor, the less noble (base) will experience galvanic corrosion. The rate of corrosion is determined by the electrolyte, the difference in ...
Quantum chemistry provides the most in-depth and exact understanding of the reason this occurs. Generally, electrons exist in orbitals that are the result of solving the Schrödinger equation for specific situations. All things (values of the n and m l quantum numbers) being equal, the order of stability of electrons in a system from least to ...
Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature.
Nevertheless, nitrogen gas does react with the alkali metal lithium to form compound lithium nitride (Li 3 N), even under ordinary conditions. Under high pressures and temperatures and with the right catalysts, nitrogen becomes more reactive; the Haber process uses such conditions to produce ammonia from atmospheric nitrogen.
Inconel is a difficult metal to shape and to machine using traditional cold forming techniques due to rapid work hardening. After the first machining pass, work hardening tends to plastically deform either the workpiece or the tool on subsequent passes.
Since fatigue crack grows in a stable fashion below the critical stress-intensity factor for fracture (fracture toughness), the process is called sub-critical crack growth. The diagram on the right shows typical fatigue-crack-growth behavior. In this log-log plot, the crack-propagation velocity is plotted against the applied stress-intensity ...