Search results
Results From The WOW.Com Content Network
An isotope that is found in nuclear waste and that represents a concern in terms of proliferation is Pu-239. The large stock of plutonium is a result of its production inside uranium-fueled reactors and of the reprocessing of weapons-grade plutonium during the weapons program.
The high short-term radioactivity of spent nuclear fuel is primarily from fission products with short half-life.The radioactivity in the fission product mixture is mostly due to short-lived isotopes such as 131 I and 140 Ba, after about four months 141 Ce, 95 Zr/ 95 Nb and 89 Sr constitute the largest contributors, while after about two or three years the largest share is taken by 144 Ce/ 144 ...
Technetium-99 (99 Tc) is an isotope of technetium that decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays.It is the most significant long-lived fission product of uranium fission, producing the largest fraction of the total long-lived radiation emissions of nuclear waste.
Alternatively, the intact spent nuclear fuel can be directly disposed of as high-level radioactive waste. The United States has planned disposal in deep geological formations, such as the Yucca Mountain nuclear waste repository, where it has to be shielded and packaged to prevent its migration to humans' immediate environment for thousands of ...
The Nuclear Waste Policy Act of 1982 established a timetable and procedure for constructing a permanent, underground repository for high-level radioactive waste by the mid-1990s, and provided for some temporary storage of waste, including spent fuel from 104 civilian nuclear reactors that produce about 19.4% of electricity there. [39]
(The Center Square) − A growing number of energy companies are looking to nuclear recycling as a way to address waste management concerns while strengthening domestic fuel supply. Ed McGinnis ...
The first large-scale nuclear reactors were built during World War II.These reactors were designed for the production of plutonium for use in nuclear weapons.The only reprocessing required, therefore, was the extraction of the plutonium (free of fission-product contamination) from the spent natural uranium fuel.
The isotopes 192 Ir and 60 Co are preferred for radiography, since iridium and cobalt are chemically non-reactive metals and can be obtained with much higher specific activities by the activation of stable 191 Ir and 59 Co in high flux reactors. However, while 137 Cs is a waste product produced in great quantities in nuclear fission reactors ...