When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.

  3. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    2 O) is a simple triatomic bent molecule with C 2v molecular symmetry and bond angle of 104.5° between the central oxygen atom and the hydrogen atoms. Despite being one of the simplest triatomic molecules , its chemical bonding scheme is nonetheless complex as many of its bonding properties such as bond angle , ionization energy , and ...

  4. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    Water (H 2 O) is an example of a bent molecule, as well as its analogues. The bond angle between the two hydrogen atoms is approximately 104.45°. [ 1 ] Nonlinear geometry is commonly observed for other triatomic molecules and ions containing only main group elements, prominent examples being nitrogen dioxide (NO 2 ), sulfur dichloride (SCl 2 ...

  5. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Another example is O(SiH 3) 2 with an Si–O–Si angle of 144.1°, which compares to the angles in Cl 2 O (110.9°), (CH 3) 2 O (111.7°), and N(CH 3) 3 (110.9°). [24] Gillespie and Robinson rationalize the Si–O–Si bond angle based on the observed ability of a ligand's lone pair to most greatly repel other electron pairs when the ligand ...

  6. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    In VSEPR theory the electron pairs on the oxygen atom in water form the vertices of a tetrahedron with the lone pairs on two of the four vertices. The H–O–H bond angle is 104.5°, less than the 109° predicted for a tetrahedral angle, and this can be explained by a repulsive interaction between the lone pairs. [2] [3] [4]

  7. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In the case of water, with its 104.5° HOH angle, the OH bonding orbitals are constructed from O(~sp 4.0) orbitals (~20% s, ~80% p), while the lone pairs consist of O(~sp 2.3) orbitals (~30% s, ~70% p). As discussed in the justification above, the lone pairs behave as very electropositive substituents and have excess s character.

  8. Ligand - Wikipedia

    en.wikipedia.org/wiki/Ligand

    2) or neutral (R 2 O, R 2 S, R 3−x NH x, and R 3 P). The steric properties of some ligands are evaluated in terms of their cone angles . Beyond the classical Lewis bases and anions, all unsaturated molecules are also ligands, utilizing their pi electrons in forming the coordinate bond.

  9. Walsh diagram - Wikipedia

    en.wikipedia.org/wiki/Walsh_diagram

    For the simplest AH 2 molecular system, Walsh produced the first angular correlation diagram by plotting the ab initio orbital energy curves for the canonical molecular orbitals while changing the bond angle from 90° to 180°. As the bond angle is distorted, the energy for each of the orbitals can be followed along the lines, allowing a quick ...