Search results
Results From The WOW.Com Content Network
If the page file is fragmented, PageDefrag can take as long or longer than Windows Defrag. However, a defragmentation of the page file can improve performance much more than defragmentation of the Registry will. PageDefrag does not defragment the contents of the registry files, only the placement of these files on the hard drive. Other ...
Pages in the page cache modified after being brought in are called dirty pages. [5] Since non-dirty pages in the page cache have identical copies in secondary storage (e.g. hard disk drive or solid-state drive), discarding and reusing their space is much quicker than paging out application memory, and is often preferred over flushing the dirty pages into secondary storage and reusing their space.
In computing, a page fault is an exception that the memory management unit (MMU) raises when a process accesses a memory page without proper preparations. Accessing the page requires a mapping to be added to the process's virtual address space. Furthermore, the actual page contents may need to be loaded from a back-up, e.g. a disk.
In this case the page is paged out to a secondary store located on a medium such as a hard disk drive (this secondary store, or "backing store", is often called a swap partition if it is a disk partition, or a swap file, swapfile or page file if it is a file). When this happens the page needs to be taken from disk and put back into physical memory.
The required disk space may be easily allocated on systems with more recent specifications (i.e. a system with 3 GB of memory having a 6 GB fixed-size page file on a 750 GB disk drive, or a system with 6 GB of memory and a 16 GB fixed-size page file and 2 TB of disk space).
A system with a smaller page size uses more pages, requiring a page table that occupies more space. For example, if a 2 32 virtual address space is mapped to 4 KiB (2 12 bytes) pages, the number of virtual pages is 2 20 = (2 32 / 2 12). However, if the page size is increased to 32 KiB (2 15 bytes), only 2 17 pages are required. A multi-level ...
By reducing the I/O activity caused by paging requests, virtual memory compression can produce overall performance improvements. The degree of performance improvement depends on a variety of factors, including the availability of any compression co-processors, spare bandwidth on the CPU, speed of the I/O channel, speed of the physical memory, and the compressibility of the physical memory ...
Requirements for page replacement algorithms have changed due to differences in operating system kernel architectures. In particular, most modern OS kernels have unified virtual memory and file system caches, requiring the page replacement algorithm to select a page from among the pages of both user program virtual address spaces and cached files.