When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Fierz identity - Wikipedia

    en.wikipedia.org/wiki/Fierz_identity

    The Fierz identities are also sometimes called the Fierz–Pauli–Kofink identities, as Pauli and Kofink described a general mechanism for producing such identities. There is a version of the Fierz identities for Dirac spinors and there is another version for Weyl spinors. And there are versions for other dimensions besides 3+1 dimensions.

  4. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...

  5. Grassmann number - Wikipedia

    en.wikipedia.org/wiki/Grassmann_number

    The ladder operators for fermions create field quanta that must necessarily have anti-symmetric wave functions, as this is forced by the Pauli exclusion principle. In this situation, a Grassmann number corresponds immediately and directly to a wave function that contains some (typically indeterminate) number of fermions.

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Pauli matrices: A set of three 2 × 2 complex Hermitian and unitary matrices. When combined with the I 2 identity matrix, they form an orthogonal basis for the 2 × 2 complex Hermitian matrices. Redheffer matrix: Encodes a Dirichlet convolution. Matrix entries are given by the divisor function; entires of the inverse are given by the Möbius ...

  7. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...

  8. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  9. Clifford group - Wikipedia

    en.wikipedia.org/wiki/Clifford_group

    The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...