Search results
Results From The WOW.Com Content Network
Equality of forward and backward reaction rates, however, is a necessary condition for chemical equilibrium, though it is not sufficient to explain why equilibrium occurs. Despite the limitations of this derivation, the equilibrium constant for a reaction is indeed a constant, independent of the activities of the various species involved ...
The forward and reverse reactions are competing with each other and differ in reaction rates. These rates depend on the concentration and therefore change with the time of the reaction: the reverse rate gradually increases and becomes equal to the rate of the forward reaction, establishing the so-called chemical equilibrium.
A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously. [1]+ + A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B.
Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which rates of reaction for the forward and backward reactions must be equal at chemical equilibrium. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used.
Chemical equilibrium is a dynamic state in which forward and backward reactions proceed at such rates that the macroscopic composition of the mixture is constant. Thus, equilibrium sign ⇌ symbolizes the fact that reactions occur in both forward ⇀ {\displaystyle \rightharpoonup } and backward ↽ {\displaystyle \leftharpoondown } directions.
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
In this case, the forward reaction involves the liberation of some protons from acetic acid molecules and the backward reaction involves the formation of acetic acid molecules when an acetate ion accepts a proton. Equilibrium is attained when the sum of chemical potentials of the species on the left-hand side of the equilibrium expression is ...
A catalyst increases the rate of a reaction without being consumed in the reaction. The use of a catalyst does not affect the position and composition of the equilibrium of a reaction, because both the forward and backward reactions are sped up by the same factor. For example, consider the Haber process for the synthesis of ammonia (NH 3):