Search results
Results From The WOW.Com Content Network
In relational databases a virtual column is a table column whose value(s) is automatically computed using other columns values, or another deterministic expression. Virtual columns are defined of SQL:2003 as Generated Column, [1] and are only implemented by some DBMSs, like MariaDB, SQL Server, Oracle, PostgreSQL, SQLite and Firebird (database server) (COMPUTED BY syntax).
The column space of a matrix is the image or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1]
To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.
As a special case, this includes: if some column is such that all its entries are zero, then the determinant of that matrix is 0. Adding a scalar multiple of one column to another column does not change the value of the determinant. This is a consequence of multilinearity and being alternative: by multilinearity the determinant changes by a ...
Two matrices must have an equal number of rows and columns to be added. [1] In which case, the sum of two matrices A and B will be a matrix which has the same number of rows and columns as A and B. The sum of A and B, denoted A + B, is computed by adding corresponding elements of A and B: [2] [3]
When vectors are involved, the terms row vector and column vector are commonly used instead. A matrix with the same number of rows and columns is called a square matrix. [5] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix.
A coordinate vector is commonly organized as a column matrix (also called a column vector), which is a matrix with only one column. So, a column vector represents both a coordinate vector, and a vector of the original vector space. A linear map A from a vector space of dimension n into a vector space of dimension m maps a column vector
where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning = ... QR decompositions can also be computed with a series of Givens rotations.