When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_approximation

    Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...

  3. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...

  4. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    The term stochastic process first appeared in English in a 1934 paper by Joseph Doob. [60] For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term stochastischer Prozeß was used in German by Aleksandr Khinchin, [63] [64] though the German term had been used earlier, for example, by Andrei Kolmogorov ...

  5. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  6. Stochastic computing - Wikipedia

    en.wikipedia.org/wiki/Stochastic_computing

    Suppose that , [,] is given, and we wish to compute .Stochastic computing performs this operation using probability instead of arithmetic. Specifically, suppose that there are two random, independent bit streams called stochastic numbers (i.e. Bernoulli processes), where the probability of a 1 in the first stream is , and the probability in the second stream is .

  7. Stochastic processes and boundary value problems - Wikipedia

    en.wikipedia.org/wiki/Stochastic_processes_and...

    Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .

  8. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.

  9. Continuous-time stochastic process - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_stochastic...

    In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values.