When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dynamic equilibrium (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Dynamic_equilibrium

    where k f is the rate constant for the forward reaction and k b is the rate constant for the backward reaction and the square brackets, […], denote concentration. If only A is present at the beginning, time t = 0 , with a concentration [A] 0 , the sum of the two concentrations, [A] t and [B] t , at time t , will be equal to [A] 0 .

  3. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which rates of reaction for the forward and backward reactions must be equal at chemical equilibrium. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used.

  4. Chemical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Chemical_equilibrium

    Equality of forward and backward reaction rates, however, is a necessary condition for chemical equilibrium, though it is not sufficient to explain why equilibrium occurs. Despite the limitations of this derivation, the equilibrium constant for a reaction is indeed a constant, independent of the activities of the various species involved ...

  5. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  6. Kolmogorov backward equations (diffusion) - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_backward...

    Informally, the Kolmogorov forward equation addresses the following problem. We have information about the state x of the system at time t (namely a probability distribution p t ( x ) {\displaystyle p_{t}(x)} ); we want to know the probability distribution of the state at a later time s > t {\displaystyle s>t} .

  7. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    The forward and reverse reactions are competing with each other and differ in reaction rates. These rates depend on the concentration and therefore change with the time of the reaction: the reverse rate gradually increases and becomes equal to the rate of the forward reaction, establishing the so-called chemical equilibrium.

  8. Microscopic reversibility - Wikipedia

    en.wikipedia.org/wiki/Microscopic_reversibility

    In chemistry, J. H. van't Hoff (1884) [4] came up with the idea that equilibrium has dynamical nature and is a result of the balance between the forward and backward reaction rates. He did not study reaction mechanisms with many elementary reactions and could not formulate the principle of detailed balance for complex reactions.

  9. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    where: k 1 is the rate coefficient for the reaction that consumes A and B; k −1 is the rate coefficient for the backwards reaction, which consumes P and Q and produces A and B. The constants k 1 and k −1 are related to the equilibrium coefficient for the reaction (K) by the following relationship (set v=0 in balance):