Search results
Results From The WOW.Com Content Network
The modern commercial production of potassium carbonate is by reaction of potassium hydroxide with carbon dioxide: [3] 2 KOH + CO 2 → K 2 CO 3 + H 2 O. From the solution crystallizes the sesquihydrate K 2 CO 3 ·1.5H 2 O ("potash hydrate"). Heating this solid above 200 °C (392 °F) gives the anhydrous salt.
Because aggressive bases like KOH damage the cuticle of the hair shaft, potassium hydroxide is used to chemically assist the removal of hair from animal hides. The hides are soaked for several hours in a solution of KOH and water to prepare them for the unhairing stage of the tanning process. This same effect is also used to weaken human hair ...
Enthalpy change of solution in water at 25 °C for some selected compounds [2] Compound ΔH o in kJ/mol; hydrochloric acid: −74.84 ammonium nitrate +25.69 ammonia: −30.50 potassium hydroxide: −57.61 caesium hydroxide: −71.55 sodium chloride +3.87 potassium chlorate +41.38 acetic acid: −1.51 sodium hydroxide: −44.50
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?
The Leblanc process was an early industrial process for making soda ash (sodium carbonate) used throughout the 19th century, named after its inventor, Nicolas Leblanc.It involved two stages: making sodium sulfate from sodium chloride, followed by reacting the sodium sulfate with coal and calcium carbonate to make sodium carbonate.
Where HV is the hydroxyl value; V B is the amount (ml) potassium hydroxide solution required for the titration of the blank; V acet is the amount (ml) of potassium hydroxide solution required for the titration of the acetylated sample; W acet is the weight of the sample (in grams) used for acetylation; N is the normality of the titrant; 56.1 is ...
It is manufactured by treating an aqueous solution of potassium carbonate or potassium hydroxide with carbon dioxide: [1] K 2 CO 3 + CO 2 + H 2 O → 2 KHCO 3. Decomposition of the bicarbonate occurs between 100 and 120 °C (212 and 248 °F): 2 KHCO 3 → K 2 CO 3 + CO 2 + H 2 O. This reaction is employed to prepare high purity potassium carbonate.
Potassium hypochlorite is produced by the disproportionation reaction of chlorine with a solution of potassium hydroxide: [2] Cl 2 + 2 KOH → KCl + KOCl + H 2 O. This is the traditional method, first used by Claude Louis Berthollet in 1789. [3] Another production method is electrolysis of potassium chloride solution.