When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    [note 3] Still further generalization is possible to functions on groups, which, besides the original Fourier transform on R or R n, notably includes the discrete-time Fourier transform (DTFT, group = Z), the discrete Fourier transform (DFT, group = Z mod N) and the Fourier series or circular Fourier transform (group = S 1, the unit circle ≈ ...

  4. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  5. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Compute the Fourier transform (b j,k) of g.Compute the Fourier transform (a j,k) of f via the formula ().Compute f by taking an inverse Fourier transform of (a j,k).; Since we're only interested in a finite window of frequencies (of size n, say) this can be done using a fast Fourier transform algorithm.

  6. Fejér kernel - Wikipedia

    en.wikipedia.org/wiki/Fejér_kernel

    In mathematics, the Fejér kernel is a summability kernel used to express the effect of Cesàro summation on Fourier series. It is a non-negative kernel, giving rise to an approximate identity. It is named after the Hungarian mathematician Lipót Fejér (1880–1959).

  7. Parseval's identity - Wikipedia

    en.wikipedia.org/wiki/Parseval's_identity

    In mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. The identity asserts the equality of the energy of a periodic signal (given as the integral of the squared amplitude of the signal) and the energy of its frequency domain representation (given as the sum of squares of the amplitudes).

  8. Cusp form - Wikipedia

    en.wikipedia.org/wiki/Cusp_form

    For example, the Ramanujan tau function τ(n) arises as the sequence of Fourier coefficients of the cusp form of weight 12 for the modular group, with a 1 = 1. The space of such forms has dimension 1, which means this definition is possible; and that accounts for the action of Hecke operators on the space being by scalar multiplication (Mordell ...

  9. Fejér's theorem - Wikipedia

    en.wikipedia.org/wiki/Fejér's_theorem

    Explicitly, we can write the Fourier series of f as = = where the nth partial sum of the Fourier series of f may be written as (,) = =,where the Fourier coefficients are = ().