Search results
Results From The WOW.Com Content Network
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.
denotes the scalar triple product of the three vectors and denotes the scalar product. Care must be taken here to avoid negative or incorrect solid angles. One source of potential errors is that the scalar triple product can be negative if a, b, c have the wrong winding. Computing the absolute value is a sufficient solution since no other ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The scalar coefficient is the triple product of the three vectors. The cross product and triple product in three dimensions each admit both geometric and algebraic interpretations. The cross product u × v can be interpreted as a vector which is perpendicular to both u and v and whose magnitude is equal to the area of the parallelogram ...
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
However, the above geometry may be used to give an independent proof of the sine rule. The scalar triple product, OA → · (OB → × OC →) evaluates to sin b sin c sin A in the basis shown. Similarly, in a basis oriented with the z-axis along OB →, the triple product OB → · (OC → × OA →), evaluates to sin c sin a sin B.
A pseudoscalar also results from any scalar product between a pseudovector and an ordinary vector. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a ...