When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Geometry. Parallel postulate; Birkhoff's axioms (4 axioms) Hilbert's axioms (20 axioms) Tarski's axioms (10 axioms and 1 schema) Other axioms

  3. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Bertrand–Diquet–Puiseux theorem (differential geometry) Bertrand's ballot theorem (probability theory, combinatorics) Bertrand's postulate (number theory) Besicovitch covering theorem (mathematical analysis) Betti's theorem ; Beurling–Lax theorem (Hardy spaces) Bézout's theorem (algebraic geometry) Bing metrization theorem (general topology)

  5. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

  6. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.

  7. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    Hilbert's axioms for plane geometry number 16, and include Transitivity of Congruence and a variant of the Axiom of Pasch. The only notion from intuitive geometry invoked in the remarks to Tarski's axioms is triangle. (Versions B and C of the Axiom of Euclid refer to "circle" and "angle," respectively.) Hilbert's axioms also require "ray ...

  8. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.

  9. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]