When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chromatin - Wikipedia

    en.wikipedia.org/wiki/Chromatin

    Furthermore, the composition and properties of chromatin vary from one cell type to another, during the development of a specific cell type, and at different stages in the cell cycle. The DNA + histone = chromatin definition: The DNA double helix in the cell nucleus is packaged by special proteins termed histones. The formed protein/DNA complex ...

  3. Histone octamer - Wikipedia

    en.wikipedia.org/wiki/Histone_octamer

    Core histones are four proteins called H2A, H2B, H3 and H4 and they are all found in equal parts in the cell. All four of the core histone amino acid sequences contain between 20 and 24% of lysine and arginine and the size or the protein ranges between 11400 and 15400 daltons, making them relatively small, yet highly positively charged proteins. [6]

  4. Chromosome - Wikipedia

    en.wikipedia.org/wiki/Chromosome

    Chromatin structure is the more decondensed state, i.e. the 10-nm conformation allows transcription. [33] Heterochromatin vs. euchromatin. During interphase (the period of the cell cycle where the cell is not dividing), two types of chromatin can be distinguished: Euchromatin, which consists of DNA that is active, e.g., being expressed as protein.

  5. Nucleosome - Wikipedia

    en.wikipedia.org/wiki/Nucleosome

    Eukaryotic genomes are ubiquitously associated into chromatin; however, cells must spatially and temporally regulate specific loci independently of bulk chromatin. In order to achieve the high level of control required to co-ordinate nuclear processes such as DNA replication, repair, and transcription, cells have developed a variety of means to ...

  6. Replication timing - Wikipedia

    en.wikipedia.org/wiki/Replication_timing

    In eukaryotic cells (cells that package their DNA within a nucleus), chromosomes consist of very long linear double-stranded DNA molecules. During the S-phase of each cell cycle ( Figure 1 ), all of the DNA in a cell is duplicated in order to provide one copy to each of the daughter cells after the next cell division.

  7. Nuclear organization - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Organization

    However, in order for the cell to function, proteins must be able to access the sequence information contained within the DNA, in spite of its tightly-packed nature. Hence, the cell has a number of mechanisms in place to control how DNA is organized. [4] Moreover, nuclear organization can play a role in establishing cell identity.

  8. Solenoid (DNA) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(DNA)

    Chromatin was first discovered by Walther Flemming by using aniline dyes to stain it. In 1974, it was first proposed by Roger Kornberg that chromatin was based on a repeating unit of a histone octamer and around 200 base pairs of DNA. [1] The solenoid model was first proposed by John Finch and Aaron Klug in 1976.

  9. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    The linking number for circular DNA can only be changed by breaking of a covalent bond in one of the two strands. Always an integer, the linking number of a cccDNA is the sum of two components: twists (Tw) and writhes (Wr). [16] = + Twists are the number of times the two strands of DNA are twisted around each other.