When.com Web Search

  1. Ad

    related to: bearing between two points calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Bearing (navigation) - Wikipedia

    en.wikipedia.org/wiki/Bearing_(navigation)

    Bearings can be measured in mils, points, or degrees. Thus, it is the same as an azimuth difference (modulo +/- 360 degrees). Alternatively, the US Army defines the bearing from point A to point B as the smallest angle between the ray AB and either north or south, whichever is closest.

  3. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.

  4. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825).

  5. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  6. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  7. Rhumb line - Wikipedia

    en.wikipedia.org/wiki/Rhumb_line

    Over longer distances and/or at higher latitudes the great circle route is significantly shorter than the rhumb line between the same two points. However the inconvenience of having to continuously change bearings while travelling a great circle route makes rhumb line navigation appealing in certain instances. [1]

  8. Marine navigation - Wikipedia

    en.wikipedia.org/wiki/Marine_navigation

    Navigation that follows the shortest distance between two points, i.e., that which follows a great circle. Such routes yield the shortest distance between two points on the globe. [16] To calculate the bearing and distance between two points it is necessary to solve a spherical triangle whose vertices are the origin, the destination, and the ...

  9. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    Figure 2. The great circle path between a node (an equator crossing) and an arbitrary point (φ,λ). Finally, calculate the position and azimuth at an arbitrary point, P (see Fig. 2), by the spherical version of the direct geodesic problem. [note 5] Napier's rules give .