When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    The classical equipartition theorem predicts that the heat capacity ratio (γ) for an ideal gas can be related to the thermally accessible degrees of freedom (f) of a molecule by = +, =. Thus we observe that for a monatomic gas, with 3 translational degrees of freedom per atom: γ = 5 3 = 1.6666 … , {\displaystyle \gamma ={\frac {5}{3}}=1. ...

  3. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...

  4. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:

  5. Ratio of specific heats - Wikipedia

    en.wikipedia.org/?title=Ratio_of_specific_heats&...

    Ratio of specific heats. Add languages. ... Download as PDF; Printable version; In other projects ... Redirect page. Redirect to: Heat capacity ratio; Retrieved from ...

  6. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    C p is therefore the slope of a plot of temperature vs. isobaric heat content (or the derivative of a temperature/heat content equation). The SI units for heat capacity are J/(mol·K). Molar heat content of four substances in their designated states above 298.15 K and at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of ...

  7. Rüchardt experiment - Wikipedia

    en.wikipedia.org/wiki/Rüchardt_Experiment

    The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).

  8. Lewis number - Wikipedia

    en.wikipedia.org/wiki/Lewis_number

    c p is the specific heat capacity at constant pressure. In the field of fluid mechanics, many sources define the Lewis number to be the inverse of the above definition. [3] [4] The Lewis number can also be expressed in terms of the Prandtl number (Pr) and the Schmidt number (Sc): [5] =

  9. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    The specific heat capacity of a substance, usually denoted by or , is the heat capacity of a sample of the substance, divided by the mass of the sample: [10] = =, where represents the amount of heat needed to uniformly raise the temperature of the sample by a small increment .