When.com Web Search

  1. Ads

    related to: calculating radius and diameter worksheet free

Search results

  1. Results From The WOW.Com Content Network
  2. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.

  3. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is . Given the area of a non-circular object A, one can calculate its area-equivalent radius by setting = or, alternatively:

  4. Roundness - Wikipedia

    en.wikipedia.org/wiki/Roundness

    Having a constant diameter, measured at varying angles around the shape, is often considered to be a simple measurement of roundness.This is misleading. [3]Although constant diameter is a necessary condition for roundness, it is not a sufficient condition for roundness: shapes exist that have constant diameter but are far from round.

  5. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    To calculate a circle's perimeter, knowledge of its radius or diameter and the number π suffices. The problem is that π is not rational (it cannot be expressed as the quotient of two integers ), nor is it algebraic (it is not a root of a polynomial equation with rational coefficients).

  6. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Another generalization is to calculate the number of coprime integer solutions , to the inequality m 2 + n 2 ≤ r 2 . {\displaystyle m^{2}+n^{2}\leq r^{2}.\,} This problem is known as the primitive circle problem , as it involves searching for primitive solutions to the original circle problem. [ 9 ]

  7. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    Liu Hui's method of calculating the area of a circle. Liu Hui's π algorithm was invented by Liu Hui (fl. 3rd century), a mathematician of the state of Cao Wei.Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 (from the proportion of the celestial circle to the diameter ...