Ads
related to: calculating radius and diameter worksheet pdf
Search results
Results From The WOW.Com Content Network
The sagitta also has uses in physics where it is used, along with chord length, to calculate the radius of curvature of an accelerated particle. This is used especially in bubble chamber experiments where it is used to determine the momenta of decay particles. Likewise historically the sagitta is also utilised as a parameter in the calculation ...
as one would expect. This is equivalent to the above definition of the 2D mean diameter. However, for historical reasons, the hydraulic radius is defined as the cross-sectional area of a pipe A, divided by its wetted perimeter P, which leads to =, and the hydraulic radius is half of the 2D mean radius. [3]
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
The radius of a circle is perpendicular to the tangent line through its endpoint on the circle's circumference. Conversely, the perpendicular to a radius through the same endpoint is a tangent line. The resulting geometrical figure of circle and tangent line has a reflection symmetry about the axis of the radius.
In forestry, quadratic mean diameter or QMD is a measure of central tendency which is considered more appropriate than arithmetic mean for characterizing the group of trees which have been measured. For n trees, QMD is calculated using the quadratic mean formula:
In this context, a diameter is any chord which passes through the conic's centre. A diameter of an ellipse is any line passing through the centre of the ellipse. [7] Half of any such diameter may be called a semidiameter, although this term is most often a synonym for the radius of a circle or sphere. [8] The longest diameter is called the ...
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
The radius of the incircle is related to the area of the triangle. [18] The ratio of the area of the incircle to the area of the triangle is less than or equal to π / 3 3 {\displaystyle \pi {\big /}3{\sqrt {3}}} , with equality holding only for equilateral triangles .