When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    To plot any dot from its spherical coordinates (r, θ, φ), where θ is inclination, the user would: move r units from the origin in the zenith reference direction (z-axis); then rotate by the amount of the azimuth angle (φ) about the origin from the designated azimuth reference direction, (i.e., either the x– or y–axis, see Definition ...

  3. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).

  5. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Rotational invariance - Wikipedia

    en.wikipedia.org/wiki/Rotational_invariance

    for any rotation R. Since the rotation does not depend explicitly on time, it commutes with the energy operator. Thus for rotational invariance we must have [R, H] = 0. For infinitesimal rotations (in the xy-plane for this example; it may be done likewise for any plane) by an angle dθ the (infinitesimal) rotation operator is

  8. Circle–ellipse problem - Wikipedia

    en.wikipedia.org/wiki/Circle–ellipse_problem

    If the interface contract for Ellipse states only that "stretchX modifies the X axis", and does not state "and nothing else will change", then Circle could simply force the X and Y dimensions to be the same. Circle.stretchX and Circle.stretchY both modify both the X and Y size.

  9. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by: = ⁡ where e is the eccentricity and is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve).