When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.

  4. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  5. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    For example: if an aircraft of mass 1000 kg is flying through the air at a speed of 50 m/s its momentum can be calculated to be 50,000 kg.m/s. If the aircraft is flying into a headwind of 5 m/s its speed relative to the surface of the Earth is only 45 m/s and its momentum can be calculated to be 45,000 kg.m/s.

  6. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    The dimension of momentum is T −1 L M. The dimension of energy is T −2 L 2 M. Dividing a unit of energy (such as eV) by a fundamental constant (such as the speed of light) that has the dimension of velocity (T −1 L) facilitates the required conversion for using a unit of energy to quantify momentum.

  7. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    The magnitude, denoted by S, divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S = ⁠ power / area ⁠ = ⁠ rate of doing work / area ⁠ = ⁠ ⁠ ΔF / Δt ⁠ Δx / area ⁠, which is the speed of light, c = Δx / Δt, times ...

  8. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    In special relativity, an object that has nonzero rest mass cannot travel at the speed of light. As the object approaches the speed of light, the object's energy and momentum increase without bound. In the first years after 1905, following Lorentz and Einstein, the terms longitudinal and transverse mass were still in use.

  9. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).