Search results
Results From The WOW.Com Content Network
The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).
Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.
The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.
For example: if an aircraft of mass 1000 kg is flying through the air at a speed of 50 m/s its momentum can be calculated to be 50,000 kg.m/s. If the aircraft is flying into a headwind of 5 m/s its speed relative to the surface of the Earth is only 45 m/s and its momentum can be calculated to be 45,000 kg.m/s.
The dimension of momentum is T −1 L M. The dimension of energy is T −2 L 2 M. Dividing a unit of energy (such as eV) by a fundamental constant (such as the speed of light) that has the dimension of velocity (T −1 L) facilitates the required conversion for using a unit of energy to quantify momentum.
The magnitude, denoted by S, divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S = power / area = rate of doing work / area = ΔF / Δt Δx / area , which is the speed of light, c = Δx / Δt, times ...
In special relativity, an object that has nonzero rest mass cannot travel at the speed of light. As the object approaches the speed of light, the object's energy and momentum increase without bound. In the first years after 1905, following Lorentz and Einstein, the terms longitudinal and transverse mass were still in use.
Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).