Search results
Results From The WOW.Com Content Network
In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.
Sometimes the term linear operator refers to this case, [1] but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that and are real vector spaces (not necessarily with =), [citation needed] or it can be used to emphasize that is a function space, which is a common ...
A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form.
Proving linearity is done by defining the first and second functions as being two other functions being multiplied by constant coefficients. Then, as shown in the derivation from the previous section, we can first use the sum law while differentiation, and then use the constant factor rule, which will reach our conclusion for linearity.
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...
A typical example of a linear functional is integration: the linear transformation defined by the Riemann integral = is a linear functional from the vector space [,] of continuous functions on the interval [,] to the real numbers
Also, the output of a linear system can contain harmonics (and have a smaller fundamental frequency than the input) even when the input is a sinusoid. For example, consider a system described by () = (+ ()) (). It is linear because it satisfies the superposition principle.
The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...