Search results
Results From The WOW.Com Content Network
For example, an IBM PC with an Intel 80486 CPU running at 50 MHz will be about twice as fast (internally only) as one with the same CPU and memory running at 25 MHz, while the same will not be true for MIPS R4000 running at the same clock rate as the two are different processors that implement different architectures and microarchitectures ...
The number of instructions per second is an approximate indicator of the likely performance of the processor. The number of instructions executed per clock is not a constant for a given processor; it depends on how the particular software being run interacts with the processor, and indeed the entire machine, particularly the memory hierarchy.
CPU time (or process time) is the amount of time that a central processing unit (CPU) was used for processing instructions of a computer program or operating system. CPU time is measured in clock ticks or seconds. Sometimes it is useful to convert CPU time into a percentage of the CPU capacity, giving the CPU usage.
Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic.
[citation needed] The argument was that the IBM computer was five times faster than the Apple II, as its Intel 8088 processor had a clock speed roughly 4.7 times the clock speed of the MOS Technology 6502 used in the latter. However, what really matters is not how finely divided a machine's instructions are, but how long it takes to complete a ...
In PCs, the CPU's external address and data buses connect the CPU to the rest of the system via the "northbridge". Nearly every desktop CPU produced since the introduction of the 486DX2 in 1992 has employed a clock multiplier to run its internal logic at a higher frequency than its external bus, but still remain synchronous with it. This ...
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
The dynamic power (switching power) dissipated by a chip is C·V 2 ·A·f, where C is the capacitance being switched per clock cycle, V is voltage, A is the Activity Factor [1] indicating the average number of switching events per clock cycle by the transistors in the chip (as a unitless quantity) and f is the clock frequency.