Ad
related to: x rays explained simply easy system- Radiology Solutions
Diagnostic Imaging
Learn More
- Contrast Agents
Check the Available Contrast
Agents And Know More.
- Equipment Service
Access Our Team Of Services Experts
Providing Quality Solutions
- Contact Us
Direct Support For Contrast
And Radiology Medical Devices
- Radiology Solutions
Search results
Results From The WOW.Com Content Network
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object.Applications of radiography include medical ("diagnostic" radiography and "therapeutic radiography") and industrial radiography.
Projectional radiography, also known as conventional radiography, [1] is a form of radiography and medical imaging that produces two-dimensional images by X-ray radiation.The image acquisition is generally performed by radiographers, and the images are often examined by radiologists.
The radioactive gamma rays are emitted through the body as the natural decaying process of these isotopes takes place. The emissions of the gamma rays are captured by detectors that surround the body. This essentially means that the human is now the source of the radioactivity, rather than the medical imaging devices such as X-ray or CT.
In film-screen radiography, an X-ray tube generates a beam of X-rays, which is aimed at the patient. The X-rays that pass through the patient are filtered through a device called a grid or X-ray filter, to reduce scatter, and strike an undeveloped film, which is held tightly to a screen of light-emitting phosphors in a light-tight cassette. The ...
The soft tissue in the human body is composed of smaller atoms than the calcium atoms that make up bone, so there is a contrast in the absorption of X-rays. X-ray machines are specifically designed to take advantage of the absorption difference between bone and soft tissue, allowing physicians to examine structure in the human body.
Digital radiography is a form of radiography that uses x-ray–sensitive plates to directly capture data during the patient examination, immediately transferring it to a computer system without the use of an intermediate cassette. [1]
X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.