Search results
Results From The WOW.Com Content Network
A cooling curve is a line graph that represents the change of phase of matter, typically from a gas to a solid or a liquid to a solid. The independent variable (X-axis) is time and the dependent variable (Y-axis) is temperature. [1] Below is an example of a cooling curve used in castings.
For pure elements or compounds, e.g. pure copper, pure water, etc. the liquidus and solidus are at the same temperature, and the term melting point may be used. There are also some mixtures which melt at a particular temperature, known as congruent melting. One example is eutectic mixture. In a eutectic system, there is particular mixing ratio ...
A phase diagram of soil indicating the masses and volumes of air, solid, water, and voids. There are a variety of parameters used to describe the relative proportions of air, water and solid in a soil. This section defines these parameters and some of their interrelationships. [2] [6] The basic notation is as follows:
Soil phase diagram showing soil composition. V is for volume, M is for mass. Subscripts s, w, and a stand for soil particles, water and air respectively. Subscripts v and t stand for voids and total respectively. Date: 9 June 2010, 11:05 (UTC) Source: Soilcomposition.png: Author: Derivative work: 5d7ygtr09h; Sjhan81
Soil bulk density, when determined at standardized moisture conditions, is an estimate of soil compaction. [3] Soil porosity consists of the void part of the soil volume and is occupied by gases or water. Soil consistency is the ability of soil materials to stick together. Soil temperature and colour are self-defining.
Soil structure describes the arrangement of the solid parts of the soil and of the pore spaces located between them (Marshall & Holmes, 1979). [1] Aggregation is the result of the interaction of soil particles through rearrangement, flocculation and cementation.
The dominant cause of soil displacement in frost heaving is the development of ice lenses. During frost heave, one or more soil-free ice lenses grow, and their growth displaces the soil above them. These lenses grow by the continual addition of water from a groundwater source that is lower in the soil and below the freezing line in the soil.
The same soil horizons may be named and labeled differently in various soil classification systems around the world, though most systems contain the following: Diagram of soil horizons Numerical prefix: indicates a lithologic discontinuity or change in parent material