Ad
related to: khan academy solving inequalities precalculus
Search results
Results From The WOW.Com Content Network
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
Maclaurin's inequality is the following chain of inequalities: with equality if and only if all the are equal. For n = 2 {\displaystyle n=2} , this gives the usual inequality of arithmetic and geometric means of two non-negative numbers.
When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4 x < 2 x + 1 ≤ 3 x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction.
Completing the square is the oldest method of solving general quadratic equations, used in Old Babylonian clay tablets dating from 1800–1600 BCE, and is still taught in elementary algebra courses today.
Advanced Placement (AP) Precalculus (also known as AP Precalc) is an Advanced Placement precalculus course and examination, offered by the College Board, in development since 2021 [1] and announced in May 2022. [2] The course debuted in the fall of 2023, with the first exam session taking place in May 2024.
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung–ErdÅ‘s inequality; Concentration inequality; Cramér–Rao inequality; Doob's martingale inequality
Computer support in solving inequations is described in constraint programming; in particular, the simplex algorithm finds optimal solutions of linear inequations. [6] The programming language Prolog III also supports solving algorithms for particular classes of inequalities (and other relations) as a basic language feature.