When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and direction. In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction.

  3. Guiding center - Wikipedia

    en.wikipedia.org/wiki/Guiding_center

    Once the particle is moving in the drift direction, the magnetic field deflects it back against the external force, so that the average acceleration in the direction of the force is zero. There is, however, a one-time displacement in the direction of the force equal to ( f / m ) ω c −2 , which should be considered a consequence of the ...

  4. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The position of one component of a mechanical system relative to another is defined by introducing a reference frame, say M, on one that moves relative to a fixed frame, F, on the other. The rigid transformation, or displacement, of M relative to F defines the relative position of the two components.

  6. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    where t = t(n) is called the surface traction, integrated over the surface of the body, in turn n denotes a unit vector normal and directed outwards to the surface S. Let the coordinate system ( x 1 , x 2 , x 3 ) be an inertial frame of reference , r be the position vector of a point particle in the continuous body with respect to the origin of ...

  7. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)

  8. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In the simple case of a single particle moving with a constant velocity (thereby undergoing uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is the difference between the particle's kinetic energy and its potential energy, times the duration for which ...

  9. De Broglie–Bohm theory - Wikipedia

    en.wikipedia.org/wiki/De_Broglie–Bohm_theory

    Holland later called this a merely apparent lack of back reaction, due to the incompleteness of the description. [12] In what follows below, the setup for one particle moving in is given followed by the setup for N particles moving in 3 dimensions.