Ad
related to: hamiltonian manifold assembly procedure tutorial manual
Search results
Results From The WOW.Com Content Network
However, the Hamiltonian still exists. In the case where the cometric is degenerate at every point q of the configuration space manifold Q, so that the rank of the cometric is less than the dimension of the manifold Q, one has a sub-Riemannian manifold. The Hamiltonian in this case is known as a sub-Riemannian Hamiltonian. Every such ...
An -action on a symplectic manifold (,) is called Hamiltonian if it is symplectic and if there exists a momentum map. A momentum map is often also required to be G {\displaystyle G} -equivariant , where G {\displaystyle G} acts on g ∗ {\displaystyle {\mathfrak {g}}^{*}} via the coadjoint action , and sometimes this requirement is included in ...
In contrast, isometries in Riemannian geometry must preserve the Riemann curvature tensor, which is thus a local invariant of the Riemannian manifold. Moreover, every function H on a symplectic manifold defines a Hamiltonian vector field X H, which exponentiates to a one-parameter group of Hamiltonian diffeomorphisms. It follows that the group ...
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Let :, (,) be a (left) group action of a Lie group on a smooth manifold ; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G {\displaystyle G} on M {\displaystyle M} consists of a Lie group homomorphism G → D i f f ( M ) {\displaystyle G\to \mathrm {Diff} (M)} .
In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton , a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics .
The position of a single particle moving in ordinary Euclidean 3-space is defined by the vector = (,,), and therefore its configuration space is =.It is conventional to use the symbol for a point in configuration space; this is the convention in both the Hamiltonian formulation of classical mechanics, and in Lagrangian mechanics.
The Hamiltonian for a system of discrete particles is a function of their generalized coordinates and conjugate momenta, and possibly, time. For continua and fields, Hamiltonian mechanics is unsuitable but can be extended by considering a large number of point masses, and taking the continuous limit, that is, infinitely many particles forming a continuum or field.