When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2

  4. Coefficient of performance - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_performance

    A realistic indication of energy efficiency over an entire year can be achieved by using seasonal COP or seasonal coefficient of performance (SCOP) for heat. Seasonal energy efficiency ratio (SEER) is mostly used for air conditioning. SCOP is a new methodology which gives a better indication of expected real-life performance of heat pump ...

  5. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    The energy efficiency of a process involving chemical change may be expressed relative to these theoretical minima or maxima.The difference between the change of enthalpy and the change of Gibbs energy of a chemical transformation at a particular temperature indicates the heat input required or the heat removal (cooling) required to maintain ...

  6. Engine efficiency - Wikipedia

    en.wikipedia.org/wiki/Engine_efficiency

    The efficiency of internal combustion engines depends on several factors, the most important of which is the expansion ratio. For any heat engine the work which can be extracted from it is proportional to the difference between the starting pressure and the ending pressure during the expansion phase.

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive variables may be viewed as a generalized "force". An imbalance in the intensive variable will cause a "flow" of the extensive variable in a direction to counter the imbalance. The equation may be seen as a particular case of the chain rule.

  8. Exergy efficiency - Wikipedia

    en.wikipedia.org/wiki/Exergy_efficiency

    Note that a Carnot engine is the most efficient heat engine possible, but not the most efficient device for creating work. Fuel cells, for instance, can theoretically reach much higher efficiencies than a Carnot engine; their energy source is not thermal energy and so their exergy efficiency does not compare them to a Carnot engine. [1] [2]

  9. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    From this energy balance, it is clear that NTU relates the temperature change of the flow with the minimum heat capacitance rate to the log mean temperature difference (). Starting from the differential equations that describe heat transfer, several "simple" correlations between effectiveness and NTU can be made. [2]