When.com Web Search

  1. Ads

    related to: sudoku solver with explanation free

Search results

  1. Results From The WOW.Com Content Network
  2. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.

  3. Sudoku - Wikipedia

    en.wikipedia.org/wiki/Sudoku

    The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [26] Many Sudoku solving algorithms , such as brute force -backtracking and dancing links can solve most 9×9 puzzles efficiently, but combinatorial explosion occurs as n increases, creating practical limits to the properties of Sudokus ...

  4. Mathematics of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_Sudoku

    The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.

  5. Sudoku code - Wikipedia

    en.wikipedia.org/wiki/Sudoku_code

    The constraints of Sudoku codes are non-linear: all symbols within a constraint (row, line, sub-grid) must be different from any other symbol within this constraint. Hence there is no all-zero codeword in Sudoku codes. Sudoku codes can be represented by probabilistic graphical model in which they take the form of a low-density parity-check code ...

  6. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    The Dancing Links algorithm solving a polycube puzzle In computer science , dancing links ( DLX ) is a technique for adding and deleting a node from a circular doubly linked list . It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem . [ 1 ]

  7. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing , [ 3 ] for the knapsack problem and other combinatorial optimization problems.

  8. Glossary of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_Sudoku

    A Sudoku variant with prime N (7×7) and solution. (with Japanese symbols). Overlapping grids. The classic 9×9 Sudoku format can be generalized to an N×N row-column grid partitioned into N regions, where each of the N rows, columns and regions have N cells and each of the N digits occur once in each row, column or region.

  9. Sudoku graph - Wikipedia

    en.wikipedia.org/wiki/Sudoku_graph

    Each row, column, or block of the Sudoku puzzle forms a clique in the Sudoku graph, whose size equals the number of symbols used to solve the puzzle. A graph coloring of the Sudoku graph using this number of colors (the minimum possible number of colors for this graph) can be interpreted as a solution to the puzzle.