When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).

  3. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals. [1] A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram).

  4. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles). Oblong: longer than wide, or wider than long (i.e., a rectangle that is not a square). [5] Kite: two pairs of adjacent sides are of equal length.

  6. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...

  7. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    For a regular n-gon, the sum of the perpendicular distances from any interior point to the n sides is n times the apothem [4]: p. 72 (the apothem being the distance from the center to any side). This is a generalization of Viviani's theorem for the n = 3 case. [5] [6]

  8. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    The angle associated with a complex number (+) is given by: ⁡ Thus, in equation 4, the angle associated with the product is: ⁡ + Note that this is the same expression as occurs in equation 3.

  9. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2n-gon, then the two sums of alternate interior angles are each equal to (n-1). [4]