Search results
Results From The WOW.Com Content Network
Depending on the problem at hand, pre-order, post-order, and especially one of the number of subtrees − 1 in-order operations may be optional. Also, in practice more than one of pre-order, post-order, and in-order operations may be required. For example, when inserting into a ternary tree, a pre-order operation is performed by comparing items.
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
A walk in which each parent node is traversed before its children is called a pre-order walk; a walk in which the children are traversed before their respective parents are traversed is called a post-order walk; a walk in which a node's left subtree, then the node itself, and finally its right subtree are traversed is called an in-order traversal.
One problem with this algorithm is that, because of its recursion, it uses stack space proportional to the height of a tree. If the tree is fairly balanced, this amounts to O(log n) space for a tree containing n elements. In the worst case, when the tree takes the form of a chain, the height of the tree is n so the algorithm takes O(n) space. A ...
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
An intuitive answer may be n − m, but that is off by one, exhibiting a fencepost error; the correct answer is n − m + 1. For this reason, ranges in computing are often represented by half-open intervals ; the range from m to n (inclusive) is represented by the range from m (inclusive) to n + 1 (exclusive) to avoid fencepost errors.
The name preorder is meant to suggest that preorders are almost partial orders, but not quite, as they are not necessarily antisymmetric. A natural example of a preorder is the divides relation "x divides y" between integers, polynomials, or elements of a commutative ring. For example, the divides relation is reflexive as every integer divides ...
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom , this preorder is even a partial order (called the specialization order ).