Search results
Results From The WOW.Com Content Network
The Dirac large numbers hypothesis (LNH) is an observation made by Paul Dirac in 1937 relating ratios of size scales in the Universe to that of force scales. The ratios constitute very large, dimensionless numbers: some 40 orders of magnitude in the present cosmological epoch.
This metric has only two undetermined parameters. An overall dimensionless length scale factor R describes the size scale of the universe as a function of time (an increase in R is the expansion of the universe), [152] and a curvature index k describes the geometry.
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] The concept of an expanding universe was scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.
This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons.
The theory explains that the universe will expand until all matter decays and ultimately turns to light. Since nothing in the universe would have any time or distance scale associated with it, the universe becomes identical with the Big Bang, resulting in a type of Big Crunch that becomes the next Big Bang, thus perpetuating the next cycle. [21]
The image was an adaptation from various generic charts depicting the growth of the size of the observable universe, for both the standard model and inflationary model respectively, of the Big Bang theory. The early, hot universe appears to be well explained by the Big Bang from roughly 10 −33 seconds onwards, but there are several problems.
As such, the observed size of the universe always increases. [ 1 ] [ 3 ] Since proper distance at a given time is just comoving distance times the scale factor [ 4 ] (with comoving distance normally defined to be equal to proper distance at the present time, so a ( t 0 ) = 1 {\displaystyle a(t_{0})=1} at present), the proper distance to the ...
Horizontal axis is the log of apparatus size (or duration time the speed of light), in meters; vertical axis is the log of the rms fluctuation amplitude in the same units. The lower left corner represents the Planck length or time. In these units, the size of the observable universe is about 26. Various physical systems and experiments are plotted.