Search results
Results From The WOW.Com Content Network
The path of this projectile launched from a height y 0 has a range d. In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance. The horizontal ranges of a projectile are equal for two complementary angles of ...
If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical ...
The graph of a cubic function always has a single inflection point. It may have two critical points, a local minimum and a local maximum. Otherwise, a cubic function is monotonic. The graph of a cubic function is symmetric with respect to its inflection point; that is, it is invariant under a rotation of a half turn around this point.
is called a biquadratic function; equating it to zero defines a biquadratic equation, which is easy to solve as follows Let the auxiliary variable z = x 2. Then Q(x) becomes a quadratic q in z: q(z) = a 4 z 2 + a 2 z + a 0. Let z + and z − be the roots of q(z). Then the roots of the quartic Q(x) are
The corresponding maximum range condition is the maximum of C L 3/2 /C D, at C L 2 = 3.C D0 /K, and so the optimum speed is 244 km/h (152 mph). The effects of the approximation C L0 = 0 are less than 5%; of course, with a finite C L0 = 0.1, the analytic and graphical methods give the same results.